Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.084
Filtrar
1.
Extremophiles ; 28(1): 15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300354

RESUMO

Glaciozyma antarctica PI12 is a psychrophilic yeast isolated from Antarctica. In this work, we describe the heterologous production, biochemical properties and in silico structure analysis of an arginase from this yeast (GaArg). GaArg is a metalloenzyme that catalyses the hydrolysis of L-arginine to L-ornithine and urea. The cDNA of GaArg was reversed transcribed, cloned, expressed and purified as a recombinant protein in Escherichia coli. The purified protein was active against L-arginine as its substrate in a reaction at 20 °C, pH 9. At 10-35 °C and pH 7-9, the catalytic activity of the protein was still present around 50%. Mn2+, Ni2+, Co2+ and K+ were able to enhance the enzyme activity more than two-fold, while GaArg is most sensitive to SDS, EDTA and DTT. The predicted structure model of GaArg showed a very similar overall fold with other known arginases. GaArg possesses predominantly smaller and uncharged amino acids, fewer salt bridges, hydrogen bonds and hydrophobic interactions compared to the other counterparts. GaArg is the first reported arginase that is cold-active, facilitated by unique structural characteristics for its adaptation of catalytic functions at low-temperature environments. The structure and function of cold-active GaArg provide insights into the potentiality of new applications in various biotechnology and pharmaceutical industries.


Assuntos
Basidiomycota , Saccharomyces cerevisiae , Arginase/genética , Basidiomycota/genética , Arginina , Escherichia coli
2.
Birth Defects Res ; 116(2): e2318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38362594

RESUMO

BACKGROUND: Arginase 1 (Arg1) encodes a key enzyme that catalyzes the metabolism of arginine to ornithine and urea. In our recent study, we found that knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. As the most abundant internal mRNA modification, N6 -methyladenosine (m6 A) has been found to play important roles in lung development and cellular differentiation. However, if the knockdown of Arg1 affects the RNA m6A modification in fetal lungs remains unknown. METHODS: In the current study, the RNA m6A levels and the expression of RNA m6A related enzymes were validated in 13.0 dpc fetal lungs that Arg1 was knocked down by adeno-associated virus carrying Arg1-shRNA, using western blot, immunofluorescence, and RT-qPCR. RESULTS: No statistical differences were found in the expression of methyltransferase, demethylases, and binding proteins in the fetal lungs between AAV-shArg1-injected mice and AAV-2/9-injected mice. Besides, there is no significant change of overall RNA m6A level in fetal lungs from AAV-shArg1-injected mice, compared with that from AAV-2/9-injected mice. CONCLUSIONS: These results indicate that arginase 1 does not affect RNA m6A methylation in mouse fetal lung, and the mechanisms other than RNA m6A modification underlying the effects of Arg1 knockdown on the fetal lung development and their interaction with labor initiation need to be further explored.


Assuntos
Arginase , 60697 , Camundongos , Animais , Arginase/genética , Arginase/metabolismo , Pulmão/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , RNA/metabolismo
3.
Cell Mol Gastroenterol Hepatol ; 17(5): 801-820, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38280549

RESUMO

BACKGROUND & AIMS: Restoring hepatic and peripheral insulin sensitivity is critical to prevent or reverse metabolic syndrome and type 2 diabetes. Glucose homeostasis comprises in part the complex regulation of hepatic glucose production and insulin-mediated glucose uptake and oxidation in peripheral tissues. We previously identified hepatocyte arginase 2 (Arg2) as an inducible ureahydrolase that improves glucose homeostasis and enhances glucose oxidation in multiple obese, insulin-resistant models. We therefore examined structure-function determinants through which hepatocyte Arg2 governs systemic insulin action and glucose oxidation. METHODS: To do this, we generated mice expressing wild-type murine Arg2, enzymatically inactive Arg2 (Arg2H160F) and Arg2 lacking its putative mitochondrial targeting sequence (Arg2Δ1-22). We expressed these hepatocyte-specific constructs in obese, diabetic (db/db) mice and performed genetic complementation analyses in hepatocyte-specific Arg2-deficent (Arg2LKO) mice. RESULTS: We show that Arg2 attenuates hepatic steatosis, independent of mitochondrial localization or ureahydrolase activity, and that enzymatic arginase activity is dispensable for Arg2 to augment total body energy expenditure. In contrast, mitochondrial localization and ureahydrolase activity were required for Arg2-mediated reductions in fasting glucose and insulin resistance indices. Mechanistically, Arg2Δ1-22 and Arg2H160F failed to suppress glucose appearance during hyperinsulinemic-euglycemic clamping. Quantification of heavy-isotope-labeled glucose oxidation further revealed that mistargeting or ablating Arg2 enzymatic function abrogates Arg2-induced peripheral glucose oxidation. CONCLUSION: We conclude that the metabolic effects of Arg2 extend beyond its enzymatic activity, yet hepatocyte mitochondrial ureahydrolysis drives hepatic and peripheral oxidative metabolism. The data define a structure-based mechanism mediating hepatocyte Arg2 function and nominate hepatocyte mitochondrial ureahydrolysis as a key determinant of glucose oxidative capacity in mammals.


Assuntos
Arginase , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Arginase/genética , Arginase/metabolismo , Glucose , Hepatócitos/metabolismo , Obesidade/metabolismo , Insulina , Mamíferos/metabolismo
4.
BMC Biotechnol ; 24(1): 6, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273334

RESUMO

BACKGROUND: L-arginase, is a powerful anticancer that hydrolyzes L-arginine to L-ornithine and urea. This enzyme is widely distributed and expressed in organisms like plants, fungi, however very scarce from bacteria. Our study is based on isolating, purifying, and screening the marine bacteria that can produce arginase. RESULTS: The highest arginase producing bacteria will be identified by using microbiological and molecular biology methods as Bacillus licheniformis OF2. Characterization of arginase is the objective of this study. The activity of enzyme was screened, and estimated beside partial sequencing of arginase gene was analyzed. In silico homology modeling was applied to generate the protein's 3D structure, and COACH and COFACTOR were applied to determine the protein's binding sites and biological annotations based on the I-TASSER structure prediction. The purified enzyme was undergone an in vitro anticancer test. CONCLUSIONS: L-arginase demonstrated more strong anti-cancer cells with an IC50 of 21.4 ug/ml in a dose-dependent manner. L-arginase underwent another investigation for its impact on the caspase 7 and BCL2 family of proteins (BCL2, Bax, and Bax/Bcl2). Through cell arrest in the G1/S phase, L-arginase signals the apoptotic cascade, which is supported by a flow cytometry analysis of cell cycle phases.


Assuntos
Arginase , Bacillus licheniformis , Arginase/genética , Arginase/metabolismo , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Proteína X Associada a bcl-2/genética , Arginina/metabolismo , Ornitina/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2
5.
Oncogene ; 43(3): 189-201, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37996700

RESUMO

Ovarian cancer has poor survival outcomes particularly for advanced stage, metastatic disease. Metastasis is promoted by interactions of stromal cells, such as cancer-associated fibroblasts (CAFs) in the tumor microenvironment (TME), with tumor cells. CAFs play a key role in tumor progression by remodeling the TME and extracellular matrix (ECM) to result in a more permissive environment for tumor progression. It has been shown that fibroblasts, in particular myofibroblasts, utilize metabolism to support ECM remodeling. However, the intricate mechanisms by which CAFs support collagen production and tumor progression are poorly understood. In this study, we show that the fibrillar collagen receptor, Discoidin Domain Receptor 2 (DDR2), promotes collagen production in human and mouse omental CAFs through arginase activity. CAFs with high DDR2 or arginase promote tumor colonization in the omentum. In addition, DDR2-depleted CAFs had decreased ornithine levels leading to decreased collagen production and polyamine levels compared to WT control CAFs. Tumor cell invasion was decreased in the presence CAF conditioned media (CM) depleted of DDR2 or arginase-1, and this invasion defect was rescued in the presence of CM from DDR2-depleted CAFs that constitutively overexpressed arginase-1. Similarly, the addition of exogenous polyamines to CM from DDR2-depleted CAFs led to increased tumor cell invasion. We detected SNAI1 protein at the promoter region of the arginase-1 gene, and DDR2-depleted CAFs had decreased levels of SNAI1 protein at the arginase-1 promoter region. Furthermore, high stromal arginase-1 expression correlated with poor survival in ovarian cancer patients. These findings highlight how DDR2 regulates collagen production by CAFs in the tumor microenvironment by controlling the transcription of arginase-1, and CAFs are a major source of arginase activity and L-arginine metabolites in ovarian cancer models.


Assuntos
Fibroblastos Associados a Câncer , Receptor com Domínio Discoidina 2 , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Arginase/genética , Fibroblastos Associados a Câncer/metabolismo , Colágeno/metabolismo , Receptor com Domínio Discoidina 2/genética , Fibroblastos/metabolismo , Neoplasias Ovarianas/patologia , Microambiente Tumoral
6.
Nat Commun ; 14(1): 7934, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040719

RESUMO

Arginase, a manganese (Mn)-dependent enzyme, is indispensable for urea generation and ammonia disposal in the liver. The potential role of fructose in Mn and ammonia metabolism is undefined. Here we demonstrate that fructose overconsumption impairs hepatic Mn homeostasis and ammonia disposal in male mice. Fructose overexposure reduces liver Mn content as well as its activity of arginase and Mn-SOD, and impairs the clearance of blood ammonia under liver dysfunction. Mechanistically, fructose activates the Mn exporter Slc30a10 gene transcription in the liver in a ChREBP-dependent manner. Hepatic overexpression of Slc30a10 can mimic the effect of fructose on liver Mn content and ammonia disposal. Hepatocyte-specific deletion of Slc30a10 or ChREBP increases liver Mn contents and arginase activity, and abolishes their responsiveness to fructose. Collectively, our data establish a role of fructose in hepatic Mn and ammonia metabolism through ChREBP/Slc30a10 pathway, and postulate fructose dietary restriction for the prevention and treatment of hyperammonemia.


Assuntos
Frutose , Manganês , Masculino , Camundongos , Animais , Manganês/toxicidade , Manganês/metabolismo , Frutose/metabolismo , Amônia/metabolismo , Arginase/genética , Arginase/metabolismo , Fígado/metabolismo , Fatores de Transcrição/metabolismo , Homeostase
7.
Endocr Regul ; 57(1): 279-291, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38127690

RESUMO

Objective. The study was performed to elucidate whether nicotinamide (NAm) can attenuate the diabetes-induced liver damage by correction of ammonia detoxifying function and disbalance of NAD-dependent processes in diabetic rats. Methods. After four weeks of streptozotocin-induced diabetes, Wistar male rats were treated for two weeks with or without NAm. Urea concentration, arginase, and glutamine synthetase activities, NAD+ levels, and NAD+/NADH ratio were measured in cytosolic liver extracts. Expression of parp-1 gene in the liver was estimated by quantitative polymerase chain reaction and PARP-1 cleavage evaluated by Western blotting. Results. Despite the blood plasma lipid peroxidation products in diabetic rats were increased by 60%, the activity of superoxide dismutase (SOD) was reduced. NAm attenuated the oxidative stress, but did not affect the enzyme activity in diabetic rats. In liver of the diabetic rats, urea concentration and arginase activity were significantly higher than in the controls. The glutamine synthetase activity was decreased. Decline in NAD+ level and cytosolic NAD+/NADH ratio in the liver of diabetic rats was observed. Western blot analysis demonstrated a significant up-regulation of PARP-1 expression accompanied by the enzyme cleavage in the diabetic rat liver. However, no correlation was seen between mRNA expression of parp-1 gene and PARP-1 protein in the liver of diabetic rats. NAm markedly attenuated PARP-1 cleavage induced by diabetes, but did not affect the parp-1 gene expression. Conclusions. NAm counteracts diabetes-induced impairments in the rat liver through improvement of its detoxifying function, partial restoration of oxidative stress, NAD+ level, normalization of redox state of free cytosolic NAD+/NADH-couples, and prevention of PARP-1 cleavage.


Assuntos
Diabetes Mellitus Experimental , Niacinamida , Ratos , Masculino , Animais , Niacinamida/farmacologia , Niacinamida/metabolismo , NAD/metabolismo , NAD/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratos Wistar , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Arginase/genética , Arginase/metabolismo , Arginase/farmacologia , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Glutamato-Amônia Ligase/farmacologia , Estresse Oxidativo , Fígado/metabolismo , Ureia/metabolismo , Ureia/farmacologia
8.
Mol Cell Biol ; 43(10): 531-546, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37807652

RESUMO

During the inflammatory response, macrophage phenotypes can be broadly classified as pro-inflammatory/classically activated "M1", or pro-resolving/alternatively "M2" macrophages. Although the classification of macrophages is general and assumes there are distinct phenotypes, in reality macrophages exist across a spectrum and must transform from a pro-inflammatory state to a proresolving state following an inflammatory insult. To adapt to changing metabolic needs of the cell, mitochondria undergo fusion and fission, which have important implications for cell fate and function. We hypothesized that mitochondrial fission and fusion directly contribute to macrophage function during the pro-inflammatory and proresolving phases. In the present study, we find that mitochondrial length directly contributes to macrophage phenotype, primarily during the transition from a pro-inflammatory to a proresolving state. Phenocopying the elongated mitochondrial network (by disabling the fission machinery using siRNA) leads to a baseline reduction in the inflammatory marker IL-1ß, but a normal inflammatory response to LPS, similar to control macrophages. In contrast, in macrophages with a phenocopied fragmented phenotype (by disabling the fusion machinery using siRNA) there is a heightened inflammatory response to LPS and increased signaling through the ATF4/c-Jun transcriptional axis compared to control macrophages. Importantly, macrophages with a fragmented mitochondrial phenotype show increased expression of proresolving mediator arginase 1 and increased phagocytic capacity. Promoting mitochondrial fragmentation caused an increase in cellular lactate, and an increase in histone lactylation which caused an increase in arginase 1 expression. These studies demonstrate that a fragmented mitochondrial phenotype is critical for the proresolving response in macrophages and specifically drive epigenetic changes via lactylation of histones following an inflammatory insult.


Assuntos
Arginase , Histonas , Humanos , Histonas/metabolismo , Arginase/genética , Arginase/metabolismo , Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Fenótipo , Inflamação/metabolismo , RNA Interferente Pequeno/metabolismo
9.
Biomarkers ; 28(7): 628-636, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37860844

RESUMO

INTRODUCTION: The implication of arginase enzyme in Human Papillomavirus (HPV) infections has not been clearly elucidated. The present study investigates whether HPV infection is correlated with changes in plasmatic arginase activity and cervical ARG1 and ARG2 mRNA expression among infected women negative for intraepithelial lesions (NIL). MATERIEL AND METHODS: The present study included 300 women. The plasmatic arginase activity was evaluated by a colorimetric assay. Cervical HPV was detected by real-time PCR. The circulating viral load and ARG1 and ARG2 mRNA expression quantification were performed by quantitative real-time PCR. RESULTS: A significant increase in plasma arginase activity and ARG1 and ARG2 mRNA expression levels in cervical cells was observed among HPV-positive women compared to the HPV-negative group. The highest levels were significantly associated with oncogenic HPV, and increased arginase activity was associated with a high HPV circulating viral load. Moreover, the highest levels of arginase activity were observed in oncogenic HPV-positive inflammatory smears. DISCUSSION: These data suggest that HPV could modulate arginase activity and expression, which may restrict arginine bioavailability and inhibit this amino acid's antiviral properties. CONCLUSION: Our findings revealed that arginase activity and isoform gene expression were upregulated in women with HPV infection, particularly the oncogenic HPV types.


Assuntos
Infecções por Papillomavirus , Neoplasias do Colo do Útero , Humanos , Feminino , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/patologia , Papillomavirus Humano , Arginase/genética , Arginase/metabolismo , RNA Mensageiro , Neoplasias do Colo do Útero/genética
10.
Cell Death Dis ; 14(10): 661, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37816735

RESUMO

We previously found that global deletion of the mitochondrial enzyme arginase 2 (A2) limits optic nerve crush (ONC)-induced neuronal death. Herein, we examined the cell-specific role of A2 in this pathology by studies using wild type (WT), neuronal-specific calbindin 2 A2 KO (Calb2cre/+ A2 f/f), myeloid-specific A2 KO (LysMcre/+ A2f/f), endothelial-specific A2 KO (Cdh5cre/+ A2f/f), and floxed controls. We also examined the impact of A2 overexpression on mitochondrial function in retinal neuronal R28 cells. Immunolabeling showed increased A2 expression in ganglion cell layer (GCL) neurons of WT mice within 6 h-post injury and inner retinal neurons after 7 days. Calb2 A2 KO mice showed improved neuronal survival, decreased TUNEL-positive neurons, and improved retinal function compared to floxed littermates. Neuronal loss was unchanged by A2 deletion in myeloid or endothelial cells. We also found increased expression of neurotrophins (BDNF, FGF2) and improved survival signaling (pAKT, pERK1/2) in Calb2 A2 KO retinas within 24-hour post-ONC along with suppression of inflammatory mediators (IL1ß, TNFα, IL6, and iNOS) and apoptotic markers (cleavage of caspase3 and PARP). ONC increased GFAP and Iba1 immunostaining in floxed controls, and Calb2 A2 KO dampened this effect. Overexpression of A2 in R28 cells increased Drp1 expression, and decreased mitochondrial respiration, whereas ABH-induced inhibition of A2 decreased Drp1 expression and improved mitochondrial respiration. Finally, A2 overexpression or excitotoxic treatment with glutamate significantly impaired mitochondrial function in R28 cells as shown by significant reductions in basal respiration, maximal respiration, and ATP production. Further, glutamate treatment of A2 overexpressing cells did not induce further deterioration in their mitochondrial function, indicating that A2 overexpression or glutamate insult induce comparable alterations in mitochondrial function. Our data indicate that neuronal A2 expression is neurotoxic after injury, and A2 deletion in Calb2 expressing neurons limits ONC-induced retinal neurodegeneration and improves visual function.


Assuntos
Arginase , Traumatismos do Nervo Óptico , Animais , Camundongos , Apoptose , Arginase/genética , Arginase/metabolismo , Calbindina 2 , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Glutamatos , Compressão Nervosa , Nervo Óptico/metabolismo , Traumatismos do Nervo Óptico/metabolismo
11.
Cell Death Dis ; 14(9): 621, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735154

RESUMO

The enzyme arginase 1 (A1) hydrolyzes the amino acid arginine to form L-ornithine and urea. Ornithine is further converted to polyamines by the ornithine decarboxylase (ODC) enzyme. We previously reported that deletion of myeloid A1 in mice exacerbates retinal damage after ischemia/reperfusion (IR) injury. Furthermore, treatment with A1 protects against retinal IR injury in wild-type mice. PEG-A1 also mitigates the exaggerated inflammatory response of A1 knockout (KO) macrophages in vitro. Here, we sought to identify the anti-inflammatory pathway that confers macrophage A1-mediated protection against retinal IR injury. Acute elevation of intraocular pressure was used to induce retinal IR injury in mice. A multiplex cytokine assay revealed a marked increase in the inflammatory cytokines interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) in the retina at day 5 after IR injury. In vitro, blocking the A1/ODC pathway augmented IL-1ß and TNF-α production in stimulated macrophages. Furthermore, A1 treatment attenuated the stimulated macrophage metabolic switch to a pro-inflammatory glycolytic phenotype, whereas A1 deletion had the opposite effect. Screening for histone deacetylases (HDACs) which play a role in macrophage inflammatory response showed that A1 deletion or ODC inhibition increased the expression of HDAC3. We further showed the involvement of HDAC3 in the upregulation of TNF-α but not IL-1ß in stimulated macrophages deficient in the A1/ODC pathway. Investigating HDAC3 KO macrophages showed a reduced inflammatory response and a less glycolytic phenotype upon stimulation. In vivo, HDAC3 co-localized with microglia/macrophages at day 2 after IR in WT retinas and was further increased in A1-deficient retinas. Collectively, our data provide initial evidence that A1 exerts its anti-inflammatory effect in macrophages via ODC-mediated suppression of HDAC3 and IL-1ß. Collectively we propose that interventions that augment the A1/ODC pathway and inhibit HDAC3 may confer therapeutic benefits for the treatment of retinal ischemic diseases.


Assuntos
Traumatismo por Reperfusão , Doenças Retinianas , Animais , Camundongos , Arginase/genética , Citocinas , Isquemia , Células Mieloides , Ornitina , Ornitina Descarboxilase , Fator de Necrose Tumoral alfa
12.
Lab Invest ; 103(10): 100227, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541621

RESUMO

Acute kidney injury (AKI) is a complex clinical syndrome with a rapid decrease in renal function caused by several different etiologies, including sepsis, ischemia, and the administration of nephrotoxic drugs. Tubular arginase 2 (ARG2), an arginine-metabolic enzyme, is a potential therapeutic target for AKI, but it has not been confirmed under various AKI conditions. The aim of this study was to investigate ARG2 as a therapeutic target for cisplatin-induced AKI. Cisplatin-treated mice with a genetic deficiency in Arg2 had significant amelioration of renal dysfunction, characterized by decreased acute tubular damage and apoptosis. In contrast, cisplatin-induced tubular toxicity was not ameliorated in proximal tubule cells derived from Arg2-deficient mice. Immunohistochemical analysis demonstrated the increased infiltration of ARG2-positive macrophages in kidneys damaged by cisplatin. Importantly, cisplatin-treated Arg2 knockout mice exhibited a significant reduction in kidney inflammation, characterized by the decreased infiltration of inflammatory macrophages and reduced gene expression of interleukin (IL)-6 and IL-1ß. The secretion of IL-6 and IL-1ß induced by lipopolysaccharides was decreased in bone marrow-derived macrophages isolated from Arg2-deficient mice. Furthermore, the lipopolysaccharide-induced elevation of mitochondrial membrane potential and production of reactive oxygen species were reduced in bone marrow-derived macrophages lacking Arg2. These findings indicate that ARG2 promotes the inflammatory responses of macrophages through mitochondrial reactive oxygen species, resulting in the exacerbation of AKI. Therefore, targeting ARG2 in macrophages may constitute a promising therapeutic approach for AKI.


Assuntos
Injúria Renal Aguda , Cisplatino , Animais , Camundongos , Injúria Renal Aguda/metabolismo , Arginase/genética , Arginase/metabolismo , Cisplatino/toxicidade , Rim/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
13.
Immunity ; 56(9): 2036-2053.e12, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572656

RESUMO

Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies.


Assuntos
Arginase , Influenza Humana , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Glutamina , Cinética , Pulmão/metabolismo , Mamíferos
14.
Elife ; 122023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37440306

RESUMO

Inhibitory CD4+ T cells have been linked with suboptimal immune responses against cancer and pathogen chronicity. However, the mechanisms that underpin the development of these regulatory cells, especially in the context of ongoing antigen exposure, have remained obscure. To address this knowledge gap, we undertook a comprehensive functional, phenotypic, and transcriptomic analysis of interleukin (IL)-10-producing CD4+ T cells induced by chronic infection with murine cytomegalovirus (MCMV). We identified these cells as clonally expanded and highly differentiated TH1-like cells that developed in a T-bet-dependent manner and coexpressed arginase-1 (Arg1), which promotes the catalytic breakdown of L-arginine. Mice lacking Arg1-expressing CD4+ T cells exhibited more robust antiviral immunity and were better able to control MCMV. Conditional deletion of T-bet in the CD4+ lineage suppressed the development of these inhibitory cells and also enhanced immune control of MCMV. Collectively, these data elucidated the ontogeny of IL-10-producing CD4+ T cells and revealed a previously unappreciated mechanism of immune regulation, whereby viral persistence was facilitated by the site-specific delivery of Arg1.


Assuntos
Citomegalovirus , Muromegalovirus , Camundongos , Animais , Interleucina-10 , Linfócitos T CD4-Positivos , Arginase/genética , Muromegalovirus/fisiologia
15.
Int J Mol Sci ; 24(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446405

RESUMO

One of the manifestations of renal aging is podocyte dysfunction and loss, which are associated with proteinuria and glomerulosclerosis. Studies show a male bias in glomerular dysfunction and chronic kidney diseases, and the underlying mechanisms remain obscure. Recent studies demonstrate the role of an age-associated increase in arginase-II (Arg-II) in proximal tubules of both male and female mice. However, it is unclear whether Arg-II is also involved in aging glomeruli. The current study investigates the role of the sex-specific elevation of Arg-II in podocytes in age-associated increased albuminuria. Young (3-4 months) and old (20-22 months) male and female mice of wt and arginase-II knockout (arg-ii-/-) were used. Albuminuria was employed as a readout of glomerular function. Cellular localization and expression of Arg-II in glomeruli were analyzed using an immunofluorescence confocal microscope. A more pronounced age-associated increase in albuminuria was found in male than in female mice. An age-associated induction of Arg-II in glomeruli and podocytes (as demonstrated by co-localization of Arg-II with the podocyte marker synaptopodin) was also observed in males but not in females. Ablation of the arg-ii gene in mice significantly reduces age-associated albuminuria in males. Also, age-associated decreases in podocyte density and glomerulus hypertrophy are significantly prevented in male arg-ii-/- but not in female mice. However, age-associated glomerulosclerosis is not affected by arg-ii ablation in both sexes. These results demonstrate a role of Arg-II in sex-specific podocyte injury in aging. They may explain the sex-specific differences in the development of renal disease in humans during aging.


Assuntos
Podócitos , Animais , Feminino , Masculino , Camundongos , Albuminúria/metabolismo , Arginase/genética , Arginase/metabolismo , Glomérulos Renais/metabolismo , Podócitos/metabolismo , Proteinúria/metabolismo
16.
EMBO Rep ; 24(8): e56352, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37291976

RESUMO

Fetal development and parturition are precisely regulated processes that involve continuous crosstalk between the mother and the fetus. Our previous discovery that wild-type mice carrying steroid receptor coactivator (Src)-1 and Src-2 double-deficient fetuses exhibit impaired lung development and delayed labor, which indicates that the signals for parturition emanate from the fetus. In this study, we perform RNA sequencing and targeted metabolomics analyses of the lungs from fetal Src-1/-2 double-knockout mice and find that expression of arginase 1 (Arg1) is significantly decreased, accompanied by increased levels of the Arg1 substrate L-arginine. Knockdown of Arg1 in the lungs of fetal mice induces apoptosis of epithelial cells and dramatically delays initiation of labor. Moreover, treatment of human myometrial smooth muscle cells with L-arginine significantly inhibits spontaneous contractions by attenuating activation of NF-κB and downregulating expression of contraction-associated protein genes. Transcription factors GR and C/EBPß increase transcription of Arg1 in an Src-1/Src-2-dependent manner. These findings provide new evidence that fetus-derived factors may play dual roles in coordinating fetal lung development and the initiation of labor.


Assuntos
Arginase , Pulmão , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Arginina/metabolismo , Desenvolvimento Fetal , Feto/metabolismo , Camundongos Knockout
17.
Nat Neurosci ; 26(6): 1008-1020, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37169859

RESUMO

Molecular diversity of microglia, the resident immune cells in the CNS, is reported. Whether microglial subsets characterized by the expression of specific proteins constitute subtypes with distinct functions has not been fully elucidated. Here we describe a microglial subtype expressing the enzyme arginase-1 (ARG1; that is, ARG1+ microglia) that is found predominantly in the basal forebrain and ventral striatum during early postnatal mouse development. ARG1+ microglia are enriched in phagocytic inclusions and exhibit a distinct molecular signature, including upregulation of genes such as Apoe, Clec7a, Igf1, Lgals3 and Mgl2, compared to ARG1- microglia. Microglial-specific knockdown of Arg1 results in deficient cholinergic innervation and impaired dendritic spine maturation in the hippocampus where cholinergic neurons project, which in turn results in impaired long-term potentiation and cognitive behavioral deficiencies in female mice. Our results expand on microglia diversity and provide insights into microglia subtype-specific functions.


Assuntos
Arginase , Microglia , Animais , Feminino , Camundongos , Arginase/genética , Arginase/metabolismo , Hipocampo/metabolismo , Microglia/metabolismo
18.
Toxicology ; 493: 153554, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37236336

RESUMO

DDT, a persistent organic pollutant, remains affecting human health worldwide. DDT and its most persistent metabolite (p,p'-DDE) negatively affect the immune response regulation and mechanisms involved in protecting against pathogens Such metabolite decreases the capability to limit intracellular growth of Mycobacterium microti and yeast. However, the effect on unstimulated (M0) and anti-inflammatory macrophages (M2) has been evaluated scanty. Herein, we evaluated the impact of p,p'-DDE at environmentally relevant concentrations (0.125, 1.25, 2.5, and 5 µg/mL) on bone marrow-derived macrophages stimulated with IFNγ+LPS to M1 or with IL-4 +IL-13 to M2. Thus we study whether the p,p'-DDE induces M0 to a specific phenotype or modulates activation of the macrophage phenotypes and explains, at least partly, the reported effects of p,p'-DDE on the M1 function. The p,p'-DDE did not affect the cell viability of M0 or the macrophage phenotypes. In M1, the p,p'-DDE decreased NO•- production and IL-1ß secretion, but increasing cellular ROS and mitochondrial O2•-, but did not alter iNOS, TNF-α, MHCII, and CD86 protein expression nor affect M2 markers arginase activity, TGF-ß1, and CD206; p,p'-DDE, did not affect marker expression in M0 or M2, supporting that its effects on M1 parameters are not dependent on M0 nor M2 modulation. The decreasing of NO•- production by the p,p'-DDE without altering iNOS levels, Arginase activity, or TNF-α, but increasing cellular ROS and mitochondrial O2 suggests that p,p'-DDE interferes with the iNOS function but not with its transcription. The p,p'-DDE decreasing of IL-1ß secretion, without any effect on TNF-α, suggest that an alteration of specific targets involved in IL-1ß secretion may be affected and related to ROS induction. The p,p'-DDE effect on iNOS function and the IL-1ß secretion process, as the NLRP3 activation, deserves further study.


Assuntos
Diclorodifenil Dicloroetileno , Macrófagos , Animais , Humanos , Camundongos , Arginase/genética , Arginase/metabolismo , Arginase/farmacologia , DDT/metabolismo , DDT/farmacologia , Diclorodifenil Dicloroetileno/toxicidade , Diclorodifenil Dicloroetileno/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/genética
19.
J Cell Biochem ; 124(6): 808-817, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042199

RESUMO

Activation of hepatic stellate cells (HSC) is a key event in the initiation of liver fibrosis. Activated HSCs proliferate and secrete excessive amounts of extracellular matrix (ECM), disturbing liver architecture and function, leading to fibrosis and eventually cirrhosis. Collagen is the most abundant constituent of ECM and proline is the most abundant amino acid of collagen. Arginine is the precursor in the biosynthetic pathway of proline. Arginine is the exclusive substrate of both nitric oxide synthase (NOS) and arginase. NOS is an M1 (proinflammatory) marker of macrophage polarization whereas arginase-1 (Arg1) is an M2 (profibrogenic) marker of macrophage polarization. Differential expression of NOS and Arg1 has not been studied in HSCs yet. To identify the expression profile of arginine catabolic enzymes during HSC activation and to investigate their role in HSC activation, primary rat HSCs were cultured-activated for 7 days and expression of iNOS and Arg1 were investigated. Nor-NOHA was used as a specific and reversible arginase inhibitor. During HSC activation, iNOS expression decreased whereas Arg1 expression increased. Inhibition of Arg1 in activated HSCs efficiently inhibited collagen production but not cell proliferation. HSC activation is accompanied by a switch of arginine catabolism from iNOS to Arg1. Inhibition of Arg1 decreases collagen synthesis. Therefore, we conclude that Arg1 can be a therapeutic target for the inhibition of liver fibrogenesis.


Assuntos
Arginase , Células Estreladas do Fígado , Ratos , Animais , Células Estreladas do Fígado/metabolismo , Arginase/genética , Arginase/metabolismo , Cirrose Hepática/metabolismo , Colágeno/metabolismo , Arginina
20.
Dis Model Mech ; 16(6)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37078586

RESUMO

Innate immune responses to inflammation and infection are complex and represent major challenges for developing much needed new treatments for chronic inflammatory diseases and drug-resistant infections. To be ultimately successful, the immune response must be balanced to allow pathogen clearance without excess tissue damage, processes controlled by pro- and anti-inflammatory signals. The roles of anti-inflammatory signalling in raising an appropriate immune response are underappreciated, representing overlooked potential drug targets. This is especially true in neutrophils, a difficult cell type to study ex vivo owing to a short lifespan, dogmatically seen as being highly pro-inflammatory. Here, we have generated and describe the first zebrafish transgenic line [TgBAC(arg2:eGFP)sh571] that labels expression of the anti-inflammatory gene arginase 2 (arg2) and show that a subpopulation of neutrophils upregulate arginase soon after immune challenge with injury and infection. At wound-healing stages, arg2:GFP is expressed in subsets of neutrophils and macrophages, potentially representing anti-inflammatory, polarised immune cell populations. Our findings identify nuanced responses to immune challenge in vivo, responses that represent new opportunities for therapeutic interventions during inflammation and infection.


Assuntos
Arginase , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Arginase/genética , Arginase/metabolismo , Animais Geneticamente Modificados , Neutrófilos , Inflamação , Anti-Inflamatórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...